Jet flow in steadily swimming adult squid.

نویسندگان

  • Erik J Anderson
  • Mark A Grosenbaugh
چکیده

Although various hydrodynamic models have been used in past analyses of squid jet propulsion, no previous investigations have definitively determined the fluid structure of the jets of steadily swimming squid. In addition, few accurate measurements of jet velocity and other jet parameters in squid have been reported. We used digital particle imaging velocimetry (DPIV) to visualize the jet flow of adult long-finned squid Loligo pealei (mantle length, L(m)=27.1+/-3.0 cm, mean +/-S.D.) swimming in a flume over a wide range of speeds (10.1-59.3 cm s(-1), i.e. 0.33-2.06 L(m) s(-1)). Qualitatively, squid jets were periodic, steady, and prolonged emissions of fluid that exhibited an elongated core of high speed flow. The development of a leading vortex ring common to jets emitted from pipes into still water often appeared to be diminished and delayed. We were able to mimic this effect in jets produced by a piston and pipe arrangement aligned with a uniform background flow. As in continuous jets, squid jets showed evidence of the growth of instability waves in the jet shear layer followed by the breakup of the jet into packets of vorticity of varying degrees of coherence. These ranged from apparent chains of short-lived vortex rings to turbulent plumes. There was some evidence of the complete roll-up of a handful of shorter jets into single vortex rings, but steady propulsion by individual vortex ring puffs was never observed. Quantitatively, the length of the jet structure in the visualized field of view, L(j), was observed to be 7.2-25.6 cm, and jet plug lengths, L, were estimated to be 4.4-49.4 cm using average jet velocity and jet period. These lengths and an average jet orifice diameter, D, of 0.8 cm were used to calculate the ratios L(j)/D and L/D, which ranged from 9.0 to 32.0 and 5.5 to 61.8, respectively. Jets emitted from pipes in the presence of a background flow suggested that the ratio between the background flow velocity and the jet velocity was more important than L/D to predict jet structure. Average jet velocities in steadily swimming squid ranged from 19.9 to 85.8 cm s(-1) (0.90-2.98 L(m) s(-1)) and were always greater in magnitude than swimming speed. Maximum instantaneous fluid speeds within squid jets ranged from 25.6 to 136.4 cm s(-1). Average jet thrust determined both from jet velocity and from three-dimensional approximations of momentum change in successive jet visualizations showed some differences and ranged from 0.009 to 0.045 N over the range of swimming speeds observed. The fraction by which the average jet velocity exceeded the swimming speed, or 'slip', decreased with increasing swimming speed, which reveals higher jet propulsive efficiency at higher swimming speeds. Jet angle, subtended from the horizontal, decreased from approximately 29 degrees to 7 degrees with increasing swimming speed. Jet frequency ranged from 0.6 to 1.3 Hz in the majority of swimming sequences, and the data suggest higher frequencies at the lowest and highest speeds. Jet velocity, angle, period and frequency exhibited increased variability at speeds between 0.6 and 1.4 L(m) s(-1). This suggests that at medium speeds squid enjoy an increased flexibility in the locomotive strategies they use to control their dynamic balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swimming dynamics and propulsive efficiency of squids throughout ontogeny.

Squids encounter vastly different flow regimes throughout ontogeny as they undergo critical morphological changes to their two locomotive systems: the fins and jet. Squid hatchlings (paralarvae) operate at low and intermediate Reynolds numbers (Re) and typically have rounded bodies, small fins, and relatively large funnel apertures, whereas juveniles and adults operate at higher Re and generall...

متن کامل

CFD Simulation of Effect of Vortex Ring for Squid Jet Propulsion And Expeiments on a Bionic Jet Propulsor

Using jet propulsion, squid can swim at high speed or at low speed with good maneuverability, which makes them quiet valuable to be studied for biomimetic purposes. Vortex rings usually occur in the highly-unsteady jet flow in squid, and they play quite important roles in the jet propulsion of squid. This paper tries to investigate the squid jet structure by computational fluid dynamics (CFD) a...

متن کامل

The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure.

High-speed, high-resolution digital video recordings of swimming squid (Loligo pealei) were acquired. These recordings were used to determine very accurate swimming kinematics, body deformations and mantle cavity volume. The time-varying squid profile was digitized automatically from the acquired swimming sequences. Mantle cavity volume flow rates were determined under the assumption of axisymm...

متن کامل

Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail...

متن کامل

Turning performance in squid and cuttlefish: unique dual-mode, muscular hydrostatic systems.

Although steady swimming has received considerable attention in prior studies, unsteady swimming movements represent a larger portion of many aquatic animals' locomotive repertoire and have not been examined extensively. Squids and cuttlefishes are cephalopods with unique muscular hydrostat-driven, dual-mode propulsive systems involving paired fins and a pulsed jet. These animals exhibit a wide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2005